Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108503

RESUMO

Actinomycetes are essential sources of numerous bioactive secondary metabolites with diverse chemical and bioactive properties. Lichen ecosystems have piqued the interest of the research community due to their distinct characteristics. Lichen is a symbiont of fungi and algae or cyanobacteria. This review focuses on the novel taxa and diverse bioactive secondary metabolites identified between 1995 and 2022 from cultivable actinomycetota associated with lichens. A total of 25 novel actinomycetota species were reported following studies of lichens. The chemical structures and biological activities of 114 compounds derived from the lichen-associated actinomycetota are also summarized. These secondary metabolites were classified into aromatic amides and amines, diketopiperazines, furanones, indole, isoflavonoids, linear esters and macrolides, peptides, phenolic derivatives, pyridine derivatives, pyrrole derivatives, quinones, and sterols. Their biological activities included anti-inflammatory, antimicrobial, anticancer, cytotoxic, and enzyme-inhibitory actions. In addition, the biosynthetic pathways of several potent bioactive compounds are summarized. Thus, lichen actinomycetes demonstrate exceptional abilities in the discovery of new drug candidates.


Assuntos
Anti-Infecciosos , Líquens , Líquens/química , Ecossistema , Fungos , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia
3.
Fitoterapia ; 162: 105297, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36096278

RESUMO

Two new nucleoside derivatives, kipukasins O (1) and P (2), one new cyclohexenone derivative, arthropsadiol D (5), and one new natural product, (+)-2,5-dimethyl-3(2H)-benzofuranone (6), together with eleven known compounds (3, 4, 7-15), were obtained from the culture broth of the endophytic fungus Aspergillus polyporicola R2 isolated from the roots of Synsepalum dulcificum. Among them, the absolute configuration of compound 5 was determined by quantum chemical calculations of NMR chemical shifts and ECD spectrum. The antimicrobial activities of these compounds were evaluated. Compound 11 exhibited obvious inhibitory activity against MRSA, Staphylococcus aureus, Salmonella typhimurium, Botrytis cinerea, and Fusarium graminearum with MIC values of 4, 4, 4, 32, and 16 µg/mL, respectively. Compound 12 exhibited antibacterial activity against S. typhimurium and MRSA with MIC values of 4 and 16 µg/mL. Compound 6 exhibited antifungal activity against F. graminearum with MIC value of 32 µg/mL.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Antibacterianos , Anti-Infecciosos/farmacologia , Antifúngicos , Aspergillus , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos
4.
Fitoterapia ; 161: 105254, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35872163

RESUMO

Secondary metabolites produced by the ascomycetes have attracted wide attention from researchers. Their diverse chemical structures and rich biological activities are essential in medicine, food, and agriculture. The monophyletic Nigrospora genus belongs to the Apiosporaceae family and is a rich source of novel and diverse bioactive metabolites. It occurs as a common plant pathogen, endophyte, and saprobe distributed in many ecosystems worldwide. Researchers have focused on discovering new species and secondary metabolites in the past ten years. The host diseases caused by Nigrospora species are also investigated. This review describes 50 references from Web of Science, CNKI, Google Scholar and PubMed related to the secondary metabolites from Nigrospora. Here, a total of 231 compounds isolated from five known species and 21 unidentified species of Nigrospora from January 1991 to June 2022 are summarized. Their structures are attributed to polyketides, terpenoids, steroids, N-containing compounds, and fatty acids. Meanwhile, 77 metabolites exhibited various biological activities like cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, antileukemic, antimalarial, phytotoxic, enzyme inhibitory, etc. Notably, this review presents a comprehensive literature survey focusing on the chemistry and bioactivity of secondary metabolites from Nigrospora.


Assuntos
Ascomicetos , Policetídeos , Antifúngicos/farmacologia , Ecossistema , Estrutura Molecular
5.
Molecules ; 26(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810439

RESUMO

Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were "Amycolatopsis", "secondary metabolite", "new or novel compound", "bioactivity", "biosynthetic pathway" and "derivatives". The objective in this review is to summarize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive compounds and derivatives are included and the prospect of the chemical substances obtained from Amycolatopsis is also discussed to provide ideas for their implementation in the field of therapeutics and drug discovery.


Assuntos
Amycolatopsis/metabolismo , Produtos Biológicos , Amycolatopsis/química , Antibacterianos/química , Antibacterianos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas , Estrutura Molecular , Metabolismo Secundário
6.
Microorganisms ; 9(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494367

RESUMO

The genus Diaporthe and its anamorph Phomopsis are distributed worldwide in many ecosystems. They are regarded as potential sources for producing diverse bioactive metabolites. Most species are attributed to plant pathogens, non-pathogenic endophytes, or saprobes in terrestrial host plants. They colonize in the early parasitic tissue of plants, provide a variety of nutrients in the cycle of parasitism and saprophytism, and participate in the basic metabolic process of plants. In the past ten years, many studies have been focused on the discovery of new species and biological secondary metabolites from this genus. In this review, we summarize a total of 335 bioactive secondary metabolites isolated from 26 known species and various unidentified species of Diaporthe and Phomopsis during 2010-2019. Overall, there are 106 bioactive compounds derived from Diaporthe and 246 from Phomopsis, while 17 compounds are found in both of them. They are classified into polyketides, terpenoids, steroids, macrolides, ten-membered lactones, alkaloids, flavonoids, and fatty acids. Polyketides constitute the main chemical population, accounting for 64%. Meanwhile, their bioactivities mainly involve cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, anti-algae, phytotoxic, and enzyme inhibitory activities. Diaporthe and Phomopsis exhibit their potent talents in the discovery of small molecules for drug candidates.

7.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153224

RESUMO

Flavonoids and isoflavonoids are polyphenolic secondary metabolites usually produced by plants adapting to changing ecological environments over a long period of time. Therefore, their biosynthesis pathways are considered as the most distinctive natural product pathway in plants. Seemingly, the flavonoids and isoflavones from fungi and actinomycetes have been relatively overlooked. In this review, we summarized and classified the isoflavones and flavonoids derived from fungi and actinomycetes and described their biological activities. Increasing attention has been paid to bioactive substances derived from microorganism whole-cell biotransformation. Additionally, we described the utilization of isoflavones and flavonoids as substrates by fungi and actinomycetes for biotransformation through hydroxylation, methylation, halogenation, glycosylation, dehydrogenation, cyclisation, and hydrogenation reactions to obtain rare and highly active biofunctional derivatives. Overall, among all microorganisms, actinomycetes are the main producers of flavonoids. In our review, we also summarized the functional genes involved in flavonoid biosynthesis.


Assuntos
Actinobacteria/metabolismo , Flavonas/metabolismo , Fungos/metabolismo , Isoflavonas/metabolismo , Biotransformação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA